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Abstract

Apicomplexan parasites possess a plastid organelle called the apicoplast. Inhibitors that

selectively target apicoplast housekeeping functions, including DNA replication and protein

translation, are lethal for the parasite, and several (doxycycline, clindamycin, and azithromy-

cin) are in clinical use as antimalarials. A major limitation of such drugs is that treated para-

sites only arrest one intraerythrocytic development cycle (approximately 48 hours) after

treatment commences, a phenotype known as the ‘delayed death’ effect. The molecular

basis of delayed death is a long-standing mystery in parasitology, and establishing the

mechanism would aid rational clinical implementation of apicoplast-targeted drugs. Para-

sites undergoing delayed death transmit defective apicoplasts to their daughter cells and

cannot produce the sole, blood-stage essential metabolic product of the apicoplast: the iso-

prenoid precursor isopentenyl-pyrophosphate. How the isoprenoid precursor depletion kills

the parasite remains unknown. We investigated the requirements for the range of isopren-

oids in the human malaria parasite Plasmodium falciparum and characterised the molecular

and morphological phenotype of parasites experiencing delayed death. Metabolomic profil-

ing reveals disruption of digestive vacuole function in the absence of apicoplast derived iso-

prenoids. Three-dimensional electron microscopy reveals digestive vacuole fragmentation

and the accumulation of cytostomal invaginations, characteristics common in digestive vac-

uole disruption. We show that digestive vacuole disruption results from a defect in the traf-

ficking of vesicles to the digestive vacuole. The loss of prenylation of vesicular trafficking

proteins abrogates their membrane attachment and function and prevents the parasite from

feeding. Our data show that the proximate cause of delayed death is an interruption of pro-

tein prenylation and consequent cellular trafficking defects.
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Introduction

The apicoplast, the plastid of the malaria parasite (Plasmodium spp.), is an essential and drug-

gable organelle. The apicoplast is found in most apicomplexan parasites, with Cryptosporidium
spp. being a notable exception [1]. The apicoplast is believed to be homologous to the chloro-

plast of dinoflagellates, being acquired by the common ancestor of Apicomplexa and Dinozoa

through the secondary endosymbiosis of an ancient photosynthetic red alga [2,3]. The algal

plastid has been retained in Apicomplexa despite losing its capacity for photosynthesis, which

was lost during the transition to obligate parasitism. The apicoplast retains a 35-kb genome,

originally derived from the cyanobacterial ancestor of all plastids, and expresses a small reper-

toire of gene products essential for the upkeep and replication of the organelle. The majority of

the endosymbiont’s genes, required for the anabolic productivity of the apicoplast, have been

transferred to the nucleus. These nuclear-encoded apicoplast proteins require a bipartite signal

peptide to correctly traffic back to and translocate through the organelle’s four membranes.

A consequence of acquiring the plastid is that Plasmodium spp., as well as closely related

human disease–causing Apicomplexans like Toxoplasma gondii maintain druggable prokary-

otic-like mechanisms and pathways [4,5]. The apicoplast’s prokaryotic-like translation appara-

tus has been an especially well-exploited antiparasitic drug target [6–9]. Many antibiotics that

chemically inhibit either the 30S or 50S bacterial ribosome, such as doxycycline and clindamy-

cin, have been repurposed to treat both malaria and toxoplasmosis [10,11]. However, a defin-

ing characteristic for known inhibitors of apicoplast protein translation or genome replication

is a curious chemotherapeutic effect referred to as delayed death.

Drugs targeting plastid maintenance cause no growth defect within the initial 48-hour

intraerythrocytic development cycle (IDC). Rather, parasites continue to grow and complete

schizogony. Daughter merozoites segment, egress, and invade a new host red blood cell

(RBC), in which they continue to develop from ring-stage parasites to trophozoites. It is only

later in this second IDC that the effect of the drug manifests and the treated parasites lethally

arrest. Seemingly, parasites treated with drugs that target plastid maintenance acquire a defect

in their apicoplast (first IDC) that becomes lethal when transmitted to their progeny (second

IDC). This is readily observed as defective apicoplast protein import and organelle segmenta-

tion and a reduction in genome number in the second but not first IDC following treatment

[4,7,12]. An effect comparable to delayed death is also observed in liver-stage P. berghei para-

sites [13]. Early liver-stage parasites treated with apicoplast-targeting antibiotics show no

apparent defect during the intracellular expansion and division but fail to segregate the apico-

plast properly and produce merosomes that do not subsequently establish a blood-stage infec-

tion [13]. A delayed-death phenotype is also observed for intracellular tachyzoites of T. gondii,
in which chemical or genetic inhibition of apicoplast function or division is lethal only in the

progeny of treated parasites [14–16]. Delayed death is an obstacle to development of some

drugs targeting the apicoplast as stand-alone malaria treatments, although such compounds

can be used in combination or as prophylactic drugs.

The apicoplast houses multiple anabolic pathways to synthesise metabolites for the growing

parasite. Pathways include biosynthetic networks for type II fatty acid synthesis (FASII), iron–

sulphur clusters (FE–S), lipoic acids, and haem, as well as a 2-C-methyl-D-erythritol 4-phos-

phate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway for isoprenoid biosynthesis

[17]. Of these, Yeh and DeRisi [18] showed that the exogenous supply of the isoprenoid pre-

cursor isopentenyl pyrophosphate (IPP) was sufficient to rescue inhibition of apicoplast pro-

tein translation and, indeed, even complete ablation of the apicoplast in intraerythrocytic

culture of P. falciparum. This indicates that isoprenoids are the sole essential metabolite sup-

plied by the apicoplast to the rest of the cell during P. falciparum blood stages. While IPP
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rescue is not experimentally possible in Toxoplasma, recent data from Amberg-Johnson and

Yeh [19] indicate that delayed death in T. gondii also depends on IPP availability. Curiously,

whereas inhibition of apicoplast housekeeping leads to delayed death, chemical or genetic abla-

tion of the MEP/DOXP pathway in Plasmodium or Toxoplasma parasites leads to immediate

death [20–23]. These data suggest that while depletion of isoprenoids is immediately deleteri-

ous, delayed-death parasites either harbour a finite isoprenoid reservoir or can only temporarily

continue to synthesise isoprenoids, likely using residual enzymes of the MEP/DOXP that were

imported into the apicoplast in the first IDC. For delayed death in T. gondii, parasites lacking an

apicoplast are able to survive by sharing metabolites between multiple parasites within a single

parasitophorous vacuole [24], provided one individual retains an apicoplast [14].

We hypothesise that delayed death is the consequence of isoprenoid fatigue: parasites are

eventually depleted of available isoprenoids but are unable to synthesise new precursors de

novo. However, the individual essential isoprenoid products, the essential roles that these iso-

prenoids play, and how isoprenoid fatigue fatally perturbs molecular processes in Plasmodium
spp. remain to be determined. IPP produced by the apicoplast likely generates a diverse collec-

tion of higher isoprenoids, which in Plasmodium spp. include 1) prenyl groups for protein

modification, 2) the isoprene side chain of ubiquinone, and 3) dolichols for glycosylphosphati-

dylinositol (GPI) biosynthesis [25]. In this study, we have investigated the essentiality of differ-

ent isoprenoid products by uncoupling the contribution that prenyl groups, ubiquinone, and

dolichols have on delayed death. We have also characterised the effects of delayed-death inhib-

itors on parasite metabolism and cellular processes for the first time. We determined that the

proximate cause of delayed death is disruption of protein prenylation and consequent cellular

trafficking defects that culminate in arrested parasite growth. We find that parasites undergo-

ing delayed death exhibited disrupted prenylation of proteins required for haemoglobin

uptake and the biogenesis of the digestive vacuole (DV). We further demonstrate defective

localisation of prenylated trafficking mediators, defective uptake of haemoglobin, and a dis-

rupted DV in these parasites. Lastly, delineating the temporal contribution of prenylation

from ubiquinone and dolichol biosynthesis to parasite development strongly indicates that dis-

ruption of prenylation is the proximate cause of delayed death.

Results

Metabolic perturbation of indolmycin-treated parasites during delayed

death

We sought to investigate the metabolomic consequences of delayed death using specific inhibi-

tion of apicoplast translation. The inhibitor with the clearest direct evidence for an unambigu-

ous apicoplast target is indolmycin, a specific inhibitor of the apicoplast tryptophanyl-tRNA

synthetase (TrpRSapi) in P. falciparum [26]. Indolmycin inhibits TrpRSapi activity in vitro,

stops protein translation in the apicoplast, and causes delayed death in P. falciparum that can

be rescued by IPP supplementation [26]. To investigate the metabolic consequence of delayed

death on P. falciparum, infected RBCs (iRBCs) were treated with indolmycin at a concentra-

tion that causes no death in the first IDC but complete death in the second IDC (equivalent to

50× the 96-hour EC50 = 50 μM), and samples were collected at regular time intervals during

the first and second IDC following treatment for analysis by liquid chromatography mass spec-

trometry (LC-MS) (Fig 1A).

The relative abundance (indolmycin treated/untreated) of the 159 metabolites detected in

the time series is summarised in Fig 1B. Indolmycin treatment did not cause metabolic pertur-

bation during the first IDC following treatment (30-hour time point). During the second IDC

following drug treatment, the relative abundance of the isoprenoid biosynthetic intermediates
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2-C-methyl-erythritol-2,4-cyclodiphosphate and DOXP, and the downstream isoprenoid spe-

cies farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) progressively

decreased in the indolmycin-treated parasites. The perturbation to isoprenoid biosynthesis is

consistent with parasites possessing a defective apicoplast that cannot make new isoprenoids.

Few other metabolic changes were observed between indolmycin-treated and untreated

parasites during the second IDC following drug treatment, with the exception of several hae-

moglobin-like peptides decreasing in abundance at 58 hours (equivalent to 14 hours post inva-

sion [hpi] in the second IDC) and beyond (Fig 1B). This perturbation suggested that

catabolism of RBC-derived haemoglobin may be compromised during indolmycin-induced

delayed death. Diminished haemoglobin metabolism might be caused either by aberrant pro-

teolysis in the parasite DV or by disrupted uptake/trafficking of haemoglobin to the DV.

Given the essential role of prenylated proteins in vesicular trafficking and membrane fusion

[27–29], it follows that decreased abundance of the prenyl precursors FPP and GGPP (Fig 1B)

could disrupt the function of proteins involved in haemoglobin metabolism; below, we show

that this is indeed the case.

Protein prenylation is disrupted during delayed death

To determine if the decreased abundance of the higher isoprenoid species and prenylation

substrates FPP and GGPP detected in the metabolomics study corresponds to disruption of

cellular protein prenylation, we used a commercial anti-farnesyl antibody, which is cross-reac-

tive to proteins with a farnesyl or geranylgeranyl modification. iRBCs were treated with 50 μM

indolmycin for 30 hours and, cell lysates were collected at 72–78 hours during their second

IDC following treatment (equivalent to 28–34 hpi in the second IDC). In untreated (DMSO

only) parasite lysates, two prominent bands were detected at approximately 50 kD and 25 kD

(Fig 2A), consistent with previously published prenylated species recognised by anti-farnesyl

antibodies [30] and (3H)prenyl/polyprenol labelling in malaria parasites [31,32]. The parasite

prenylome includes prenylated proteins at the approximate sizes detected: Rab guanosine-5’-

triphosphate (GTP)ases (23–27 kD) and a HSP40 analogue (PF3D7_1437900) (40 kD) [27,28].

Indolmycin-treated parasites, collected 72–78 hrs following drug treatment (equivalent to 28–

34 hpi in the second IDC), had a significant reduction in Rab proteins detected by anti-farnesyl

(P< 0.001, two-tailed Student t test) (Fig 2B), suggesting a reduced capacity for delayed-death

parasites to prenylate target proteins in the IDC after treatment.

To determine if the apparent failure to prenylate protein in delayed-death parasites is due

to lack of isoprenoids used for protein prenylation (i.e., FPP/GGPP), we substituted the poly-

prenol analogue geranylgeraniol (GGOH) into the medium of indolmycin-treated parasites.

GGOH has previously been reported to protect parasites from fosmidomycin treatment [33].

We therefore hypothesised that GGOH substitution following indolmycin treatment would

Fig 1. Untargeted metabolomic analysis of delayed death-parasites indicates isoprenoid defect and decreased haemoglobin turnover.

(A) Schematic of delayed death in P. falciparum. During the first IDC, parasites develop over approximately 48 hours from the ring-stage into

a metabolically active trophozoite, before dividing into multiple daughter merozoites by schizogony. Parasites treated with an apicoplast

inhibitor during this first IDC successfully complete schizogony, but the daughter merozoites inherit a defective apicoplast. The lethal effect of

the drug manifests only after invasion of a new host cell, in which parasites fail to complete a second IDC. Delayed-death parasites in this

study were sampled for metabolomic analysis by LC-MS at the indicated time intervals post drug administration. (B) Heat map summarising

the metabolic effect of the delayed-death inhibitor indolmycin (50 μM) on P. falciparum-infected RBC cultures. Total metabolite pools

(measured as ion counts) across two IDCs were determined relative to untreated controls. Samples were collected for analysis at 30, 58, 68, 78,

and 88 hours post drug administration, equivalent to 30 hpi in the first IDC and then 14, 24, 34, and 44 hpi in the second IDC. Changes in

total metabolite pools are expressed as log2 ratios of indolmycin-treated cultures compared to untreated controls. Data are presented as the

means of three independent experiments. See S1 Data for raw metabolomics data underlying heat map. hpi, hours post invasion; IDC,

intraerythrocytic developmental cycle; LC-MS, liquid chromatography mass spectrometry; RBC, red blood cell.

https://doi.org/10.1371/journal.pbio.3000376.g001
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facilitate further protein prenylation by complementing the depletion of de novo prenyl

groups. Consistent with this hypothesis, the indolmycin-treated parasites supplemented with

5 μM GGOH show bands at the same size as detected in the untreated sample (Fig 2A).

Polyprenol substitution rescues parasites from delayed death

Supplementing the medium of indolmycin-treated parasites with the isoprenoid precursor IPP

(>200 μM) is sufficient to rescue parasites from delayed death indefinitely (Fig 3A) [18].

Growth inhibition of iRBCs by indolmycin has a 48-hour EC50 > 50 μM (n = 3), a 96-hour

EC50 = 1.1 μM (n = 3, SD ± 1.1 μM), and a 144-hour EC50 = 0.1 μM (n = 3, SD ± 0.12 μM) (Fig

3B). With 200 μM IPP supplementation, iRBC are protected from the lethal effect of indolmycin

up to the maximum concentration assayed (50 μM) at both 96 hours and 144 hours (Fig 3A and

3B). Given that GGOH supplementation protects against the depletion of prenylated proteins,

we tested whether polyprenol precursors have a dose-dependent protective effect against indol-

mycin treatment. We first performed growth inhibition assays using GGOH and farnesol

(FOH; the alcohol analogue of the prenyl group FPP) and determined that concentrations of

GGOH exceeding 20 μM or FOH exceeding 30 μM were antagonistic to parasite growth (S1

Fig). To be used as productive substrates for protein prenylation, FOH and GGOH must first be

phosphorylated (by unknown kinases) to FPP and GGPP; however, it is possible that FOH and

GGOH compete directly as unproductive FPP and GGPP substrates and that this has a dose-

dependent toxic effect on the parasite. Of these two polyprenol compounds, GGOH but not

FOH showed protective effects when supplemented into the medium of indolmycin-treated

parasites, with 5 μM GGOH being the lowest optimal protective concentration without antago-

nising parasite survival (S2A Fig). Likewise, supplementation of indolmycin-treated parasites

with a combination of GGOH or FOH showed no synergistic protective effects (S2B Fig), sug-

gesting that GGOH but not FOH is readily used as a prenylation substrate, which is consistent

Fig 2. Apicoplast inhibitors decrease global parasite prenylation in the second IDC after treatment. (A)

Immunoblot analysis of parasites treated with indolmycin (50 μM) with or without polyprenol rescue (5 μM GGOH),

as indicated. Parasite lysates were collected after saponin isolation during their second IDC, and immunoblots were

probed using anti-farnesyl (1:2,000) to analyse global parasite prenylation. Prenylated species are annotated as putative

Rabs (23–27 kD) or HSP40 (40 kD) (assignment based on published P. falciparum prenylomes) [27,28]. Anti-Bip

(1:1,000) were used as a loading control with an expected size of 65 kD. Immunoblot is representative of four

independent experiments. (B) Quantification of the 27 kD Prenylated Rabs, normalised to average density of

untreated. Data are presented as the means of four independent experiments ± SD. ���P< 0.001, two-tailed Student t
test. See S2 Data for numerical data underlying figure. GGOH, geranylgeraniol; IDC, intraerythrocytic developmental

cycle; ns, not significant.

https://doi.org/10.1371/journal.pbio.3000376.g002
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Fig 3. Polyprenol supplementation with GGOH protects parasites from the effect of apicoplast inhibitors in the second IDC after treatment. (A) Dose-response

curve from SYBR-Green susceptibility assay determined 48, 96, and 144 hours post indolmycin treatment, with polyprenol (5 μM GGOH) or isoprenoid (200 μM IPP)

supplementation as indicated. Indolmycin causes a delayed-death effect (inhibition at 96 but not 48 hours) that is rescued by GGOH or IPP supplementation. Inhibition

at 144 hours is rescued by IPP but not GGOH supplementation. Data are presented as the means of three independent experiments ± SEM. See S2 Data for numerical

data underlying figure. (B) Summary table of EC50s for delayed-death antimalarials indolmycin, clindamycin, and chloramphenicol, determined at 48, 96, and 144 hours

post treatment, with polyprenol (5 μM GGOH) or isoprenoid (200 μM IPP) rescue as indicated. Data are presented as the means of three independent

experiments ± SD. �P< 0.05, two-tailed Student t test. (C) Thin-blood smears were collected for Giemsa-microscopy every 6 hours during the second IDC following

indolmycin treatment. Scale bar = 5 μm. GGOH, geranylgeraniol; IDC, intraerythrocytic developmental cycle; IPP, isopentenyl pyrophosphate; ns, not significant.

https://doi.org/10.1371/journal.pbio.3000376.g003
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with ex vivo studies where [3H]GGOH was used preferentially to [3H]FOH as a substrate to

modify protein in P. falciparum [32].

Supplementing the medium with 5 μM GGOH increased the 96-hour EC50 of indolmycin to

>50 μM (n = 3) (Fig 3B). Importantly, GGOH was supplemented only after replacing the

medium in the second IDC. However, unlike IPP, the protective effect of GGOH is only tempo-

rary, with no difference between the 144-hour EC50 values for indolmycin-treated and GGOH

rescue (Fig 3B). This shows that provision of the polyprenol precursor GGOH rescues parasites

during the second IDC following indolmycin treatment but that the rescued parasites still even-

tually succumb to the lethal effect of the drug precluding a third IDC (Fig 3C). We confirmed

that temporary rescue with GGOH was common to delayed death–causing drugs by repeating

the analysis with clindamycin and chloramphenicol, antibiotics that target separate components

of the apicoplast protein-translation apparatus (Fig 3B), and which have previously been shown

to be completely rescuable using IPP [34]. 5 μM GGOH supplementation protected parasites

from delayed death up the maximum concentration of clindamycin assayed (>10 μM, n = 3,

approximately 1,000× 96-hour EC50), and chloramphenicol showed a significant fold reduction

in its 96-hour EC50 when treated parasites were supplemented with 5 μM GGOH from

27.3 μM, (n = 3, SD ± 6.6 μM) to 65.64 μM (n = 3, SD ± 10.8 μM) (P< 0.05, two-tailed Student

t test) (Fig 3B and S3 Fig). However, consistent with our findings using indolmycin, GGOH did

not protect parasites from treatment with clindamycin or chloramphenicol in the third IDC

after treatment (Fig 3B and S3 Fig). Together, these data show that the failure to prenylate pro-

teins during the parasite’s second IDC following indolmycin-treatment is the proximate cause

of delayed death and that supplementing the polyprenol precursor GGOH is sufficient to allevi-

ate the effects of isoprenoid fatigue in these parasites. However, restoring the capacity of

delayed-death parasites to prenylate proteins alone is insufficient to indefinitely rescue parasites.

As such, we hypothesise that disrupting protein prenylation is the immediate cause of parasite

death in the second IDC but that even if this pathway is supplemented, another lethal insult ulti-

mately arises, resulting in growth arrest that precludes a third IDC.

Aberrant uptake/trafficking of RBC cytoplasm to the DV during delayed

death

Considering the observed disruption in haemoglobin metabolism (Fig 1B), we sought to deter-

mine whether host haemoglobin uptake or trafficking is disrupted during delayed death. We

investigated parasite-mediated RBC cytoplasm internalisation using a fluorescein-dextran (F-

dextran) uptake assay modified from Frankland and colleagues [35] and Baker and colleagues

[36]. Uninfected RBCs were loaded with F-dextran such that their cytosolic contents are fluores-

cently labelled. Newly invaded, preloaded iRBCs were treated with 50 μM indolmycin for 30

hours and imaged by live-cell fluorescence microscopy 72–78 hours following drug treatment

(equivalent to 28–34 hpi in the second IDC) (Fig 4A). In the untreated iRBCs (DMSO only), the

F-dextran was internalised by the parasite and concentrated into one or sometimes two com-

partments (Fig 4B), consistent with Baker and colleagues [36]. In parasites with two F-dextran-

labelled compartments, the larger compartment was typically adjacent to a smaller compart-

ment (Fig 4A, untreated). This is consistent with a single parasite DV and transitory vesicles

containing F-dextran internalised from the RBC cytoplasm. In the indolmycin-treated group,

the F-dextran was more frequently concentrated into multiple compartments (P< 0.01, one-

tailed Student t test) (Fig 4B). This suggests that although the initial internalisation of RBC cyto-

plasm by treated parasites is unaffected, the trafficking or fusion of the internalised vesicles to

the DV is disrupted. This led to an accumulation of aberrant compartments that is consistent

with a defective RBC cytoplasm uptake phenotype [37]. Parasites treated with indolmycin but

Prenylation-dependent trafficking defects cause Plasmodium delayed death

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000376 July 18, 2019 8 / 28

https://doi.org/10.1371/journal.pbio.3000376


then supplemented with GGOH after treatment internalised the F-dextran into one or two

compartments, equivalent to untreated samples (Fig 4B). This demonstrates that delayed death

is linked to the aberrant uptake of RBC cytoplasm, but this is ameliorated by polyprenol substi-

tution, which suggests that the vesicle trafficking defect is prenylation dependent.

Ultrastructural analysis of the parasite DV reveals fragmented biogenesis

Internalised RBC cytoplasm accumulates within multiple aberrant compartments of the

delayed-death parasites. To investigate the nature of these aberrant compartments, we per-

formed an analysis of parasite ultrastructure by electron microscopy. Initial analysis of ultra-

thin sections of indolmycin-treated parasites by transmission electron microscopy revealed

aberrant DVs as well as multiple membrane-bound enclosures of RBC cytoplasm (S4 Fig). The

3D arrangement of such aberrant compartments is difficult to decipher from individual sec-

tions, so we examined the 3D ultrastructure of untreated and delayed-death parasites using

reconstruction of hundreds of sections after serial block-face scanning electron microscopy

(SEM) (Fig 5 and S1 Movie). 3D reconstructions of multiple trophozoite-infected RBCs sup-

ported our initial observations from 2D electron microscopy sections (Fig 5A)—that indolmy-

cin treatment disrupts formation of the DV and that treated parasites generate multiple DV

fragments, each containing haemozoin crystals (Fig 5B and S2 Movie). Remarkably, GGOH

rescue completely ameliorated the fragmented DV phenotype, restoring a single DV (Fig 5B).

Quantification of the number of DV compartments per cell in different conditions is shown in

Fig 5C. This suggests a hereto unknown role for prenylated proteins in the formation of a

mature DV.

Fig 4. Indolmycin treated parasites aberrantly internalise F-dextran from preloaded RBCs in the second IDC

after treatment. Uninfected RBCs were preloaded with F-dextran by gentle hypotonic lysis and resealing. Following

this, enriched and synchronised schizont-stage parasites were added to the loaded RBCs and merozoites were allowed

to reinvade. Newly invaded ring-stage parasites were treated with indolmycin (50 μM), with and without polyprenol

(5 μM GGOH) rescue as indicated. (A) Representative live-cell images taken 72–78 hours after drug administration are

shown (equivalent to 28–32 hpi in the second IDC after treatment). F-dextran, green signal; Hoechst: parasite nuclei,

blue signal; merge: BF and blue signal. Scale bar = 5 μm. (B) The number of F-dextran compartments per iRBC were

scored in three independent experiments. ��P< 0.01, one-tailed Student t test. Scatter dot plot shows error bars with

mean ± SD. See S2 Data for numerical data underlying figure. BF, bright field; F-dextran; fluorescein dextran; GGOH,

geranylgeraniol; hpi, hours post invasion; IDC, intraerythrocytic developmental cycle; ns, not significant; RBC, red

blood cell.

https://doi.org/10.1371/journal.pbio.3000376.g004
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Fig 5. Aberrant morphology of intracellular structures is prenylation dependent in delayed-death parasites. Parasites

were treated with indolmycin (50 μM), with and without polyprenol rescue (5 μM GGOH) as indicated. Enriched
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As well as confirming the fragmentation of the DV in delayed-death parasites, analysis of

the 3D reconstructions dramatically altered our understanding of the membrane-bound enclo-

sures of iRBC cytoplasm in the delayed death parasites. Rather than representing numerous

discrete compartments, these were revealed as dramatic extensions of the cytostomal invagina-

tion that twisted and wound throughout the cytoplasm of the parasite (Fig 5B, and S3–S5 Mov-

ies). As with the DV fragmentation phenotype, this extended invagination phenomenon was

rescued by addition of GGOH. We found that the total volume of DVs decreased while the vol-

ume of the cytostomal invaginations increased within the indolmycin-treated parasites com-

pared to untreated and GGOH-rescued parasites (Fig 5D). These data support a model

whereby the trafficking of RBC cytoplasm (and thus haemoglobin) from cytostomes is per-

turbed such that the cytostomal invagination itself becomes distended, and the delivery of

packages of RBC cytoplasm is severely impaired resulting in a fragmented DV.

Rab GTPase-mediated vesicular trafficking is disrupted during the second

IDC following indolmycin treatment

As demonstrated above, delayed death diminishes protein prenylation during the second IDC

following treatment (Fig 2). We hypothesised that without prenyl modification of nascent pro-

tein, the protein substrates of prenyl-transferases that are dependent on their prenyl modifica-

tion for localisation or function, such as Rab GTPases, will mislocalise during delayed death.

We examined the prenylated Rab GTPase, Rab5a, which has previously been shown to be asso-

ciated with haemoglobin-containing vesicles and has been hypothesised to play a role in at

least one of the three or four semiredundant, but unique haemoglobin uptake pathways pres-

ent in P. falciparum [29]. More recent experiments in Toxoplasma indicate a role for Rab5a in

the vesicular trafficking to the secretory organelles [38]. It remains unclear what role Rab5a

has in Plasmodium vesicular trafficking; nevertheless, it is a useful representative vesicular traf-

ficking determinant whose function relies on prenylation [39].

We detected green fluorescent protein (GFP)-fusions of Rab5a in untreated parasites as dis-

crete foci dispersed throughout trophozoite-stage parasites (Fig 6), as previously shown [39].

During the second IDC following clindamycin treatment, GFP-Rab5a mislocalised and, instead

of being concentrated in discrete foci, was dispersed in a diffuse cytoplasmic pattern. Prenylation

of Rab5a mediates membrane association (possibly alongside cargo-binding), and the apparent

cytosolic dispersal of Rab5a in delayed-death parasites is consistent with loss of prenylation-

mediated membrane attachment. This effect was less pronounced in late-stage parasites (Fig 6),

suggesting that Rab5a’s localisation may be influenced by additional factors in that stage.

Another prenylated Rab, Rab11a, is localised to the inner membrane complex (IMC) of

P. falciparum and is proposed to facilitate vesicle recycling and transport of IMC proteins such

as glideosome-associated protein 45 (GAP45) [40]. Consistent with previous observations

trophozoite-stage parasites were collected for reduced osmium fixation 72–78 hours post drug administration (equivalent

to 28–32 hpi in the second IDC after treatment). (A) Representative images (top-down and cross-sectional), from SEM of

each condition: untreated, indolmycin treated (+ indolmycin), and indolmycin treated with polyprenol rescue

(+ indolmycin + GGOH). Structures indicated are N, DV, and CI. Scale bar = 3 μm. (B) 3D-rendered iRBCs using serial

block-face scanning electron microscopy. Indicated compartments are RBC (white), parasite (blue), CIs (yellow), and DV

(red). Scale bar = 3 μm. (C) Parasites were scored for number of DV compartments relative to number of nuclei in each

treatment condition. Untreated: 1 nucleus n = 18, 2 nuclei n = 34,� 3 nuclei n = 49; + indolmycin: 1 nucleus n = 16, 2

nuclei n = 29,� 3 nuclei n = 14; + indolmycin + GGOH 1 nucleus n = 17, 2 nuclei n = 19,� 3 nuclei n = 19. Scatter dot

blots show error bars with mean ± SD. (D) The total volume (μm3) of the DVs and CIs were measured in each treatment

condition. Bar graphs show error bars with mean ± SD. See S2 Data for numerical data underlying figure. CI, cytostomal

invagination; DV, digestive vacuole; GGOH, geranylgeraniol; hpi, hours post invasion; IDC, intraerythrocytic

developmental cycle; N, nucleus; RBC, red blood cell.

https://doi.org/10.1371/journal.pbio.3000376.g005
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[41], we observed GAP45 at the IMC in schizont stages of untreated parasites. However, fol-

lowing indolmycin treatment during the second IDC, GAP45 did not localise to structures

that resemble IMC (Fig 7), suggesting that there is a defect in the assembly or trafficking of the

IMC in delayed death parasites. The normal localisation of GAP45 was restored with GGOH

recue treatment (Fig 7). Importantly, secretory trafficking pathways remain intact in the sec-

ond IDC following indolmycin or clindamycin treatment, as demonstrated by normal export

of ring-exported protein 1 (REX1) to the iRBC (S5 Fig). The prenylation-dependent mislocali-

sation of Rab5a to the cytosol and putative disruption of Rab11a cargo delivery suggests that

these trafficking proteins lose their normal association with target biological membranes dur-

ing delayed death, consistent with the inactive or unbound form of these Rab GTPase proteins.

Indolmycin-induced delayed death increases osmotic fragility of iRBC

Because indolmycin treatment produces severe disruption of the morphology of the DV and

haemoglobin trafficking apparatuses, we examined potential physiological effects from dis-

rupted feeding that may contribute to delayed death. Intraerythrocytic parasites progressively

internalise and digest host-derived haemoglobin to 1) acquire amino acids [42], 2) increase the

available space within the iRBC into which the parasite can grow into [43], and 3) catabolise

and expel excess host protein to mitigate the increased colloid-osmotic pressure caused by par-

asite growth within the iRBC [44,45]. Aberrant haemoglobin uptake induced by indolmycin

treatment might kill parasites by disrupting these homeostatic mechanisms.

Fig 6. Rab5a shows an aberrant localisation in the second IDC after clindamycin treatment. (A) Representative

live-cell images of untreated and clindamycin (5 μM) treated parasites in the second IDC following treatment are

shown. Cell populations were divided into parasites with 6 or fewer nuclei (upper panel) and parasite with more than 6

nuclei (lower panel), as the disruption is clearly most pronounced in trophozoite stage parasites. GFP-Rab5a, green

signal; DAPI: parasite nuclei, blue signal; merge of green and blue signal. Scale bar = 5 μm. (B) Graph showing the ratio

of the brightest GFP focus fluorescence intensity to mean fluorescence intensity distributed in the parasite cytoplasm

in untreated and clindamycin treated parasites. N = 38 for untreated, 1–6 nuclei; n = 52 for + clindamycin, 1–6 nuclei;

n = 20 for control,> 6 nuclei and n = 16 for + clindamycin,> 6 nuclei. �P< 0.05; ���P< 0.001, Welch t test. Scatter

dot plots show error bars with mean ± SD. See S2 Data for numerical data underlying figure. DAPI, 40,6-diamidino-

2-phenylindole; DIC, differential interference contrast; GFP, green fluorescent protein; IDC, intraerythrocytic

developmental cycle; iRBC, infected red blood cell.

https://doi.org/10.1371/journal.pbio.3000376.g006
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To determine whether the cellular homeostasis that maintains osmotic pressure is disrupted

in indolmycin-treated parasites, we measured osmotic fragility. The propensity for iRBCs to

haemolyse in varying hypotonic solutions was measured using a modified method described

in Mauritz and colleagues [45] and Dennis and colleagues [46]. Indolmycin-treated parasites

showed an increase in osmotic fragility relative to untreated iRBC at all tonicities assayed in

the second IDC after treatment (Fig 8A). The half-maximal lytic concentration for indolmycin

treated parasites increased significantly by 22.3% (n = 4, SD ± 6.07) (P< 0.05, two-tailed Stu-

dent t test) (Fig 8B). Like other experiments described above, restoration of prenylation by res-

cue with GGOH restored measurements of osmotic fragility to those of untreated iRBCs (Fig

8A and 8B). This supports the suggestion that disruption of protein prenylation by indolmycin

treatment reduces the capacity of treated parasites to internalise and degrade host-derived hae-

moglobin and that this has a profound effect on the physiology of the parasite and its host cell,

likely contributing to growth arrest and delayed death.

Uncoupling ubiquinone and dolichol contributions during third IDC

arrest

Restoring protein prenylation in delayed death using GGOH rescue treatment demonstrates

that the proximate cause of delayed death is a defect in protein prenylation. However, even

when rescued by GGOH, these polyprenol-rescued parasites are still unable to survive a third

Fig 7. IMC formation is disrupted in the second IDC after indolmycin treatment. Shown are representative images

of immunofluorescence assays using anti-GAP45 (1:1,000). Untreated, indolmycin (50 μM) treated and indolmycin

treated with polyprenol rescue (5 μM GGOH) as indicated, collected in the second IDC after treatment. The IMC

marker GAP45 localises atypically in indolmycin treated parasites. GGOH supplementation restores GAP45

localisation to the IMC equivalent to untreated. GAP45, green signal; DAPI, parasite nuclei, blue signal; merge of green

and blue signal. Scale bar = 5 μm. BF, bright field; DAPI, 40,6-diamidino-2-phenylindole; GGOH, geranylgeraniol;

IDC, intraerythrocytic developmental cycle; IMC, inner membrane complex.

https://doi.org/10.1371/journal.pbio.3000376.g007
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IDC following treatment (Fig 2 and S3 Fig) suggesting that additional causes of parasite death

arise from disruption of another isoprenoid pathway. Ubiquinone (or Co-enzyme Q) is the

principle and essential electron acceptor for electron transport in mitochondrion. Ubiquinone

inserts into the inner membrane of the mitochondrion by its isoprene tail. In blood-stage

P. falciparum, the mitochondrion’s primary function is to provide electrons for use by dihy-

droorotate dehydrogenase, an essential metabolic enzyme required for pyrimidine biosynthe-

sis [47]. To determine whether disruption of ubiquinone contributes to third IDC arrest in

polyprenol-rescued parasites, we used a transgenic parasite expressing Saccharomyces cerevi-
siae (yeast) dihydroorotate dehydrogenase (yDHODH). The yDHODH enzyme uses fumarate

as an electron acceptor and is independent of ubiquinone for pyrimidine biosynthesis and

hence uncouples blood-stage P. falciparum’s dependence on mitochondrial electron transport

[47]. Although these transgenic yDHODH parasites are slow growing, in asexual blood stages,

they are resistant to inhibition that results in mitochondrial perturbations.

Parasites expressing yDHODH were not innately protected from second IDC arrest after

indolmycin treatment (Fig 9). This suggests that isoprenoid disruption of parasite DHODH is

not the cause of delayed death and indeed causes no further insult in the second IDC after

indolmycin treatment even after the initial insult of disruption of protein prenylation. Further-

more, indolmycin-treated yDHODH parasites supplemented with GGOH were not protected

in the third IDC after treatment. This result indicates that arrest in the third IDC after treat-

ment cannot be attributed either to disruption of parasite DHODH or protein prenylation.

The remaining known fate for isoprenoids in Plasmodium is in the synthesis of dolichols, so

P. falciparum survival during the third IDC following indolmycin treatment is likely co-con-

tingent with dolichol biosynthesis from isoprenoid precursors.

Fig 8. Indolmycin-treated parasites have increased osmotic fragility in the second IDC after treatment. (A)

Parasites were treated with indolmycin (50 μM) and divided into two conditions, with and without polyprenol rescue

(5 μM GGOH). Enriched trophozoite-stage parasites were collected 72–78 hours post drug administration (equivalent

to 28–32 hpi in the second IDC after treatment) and incubated in solutions with tonicity varied by increasing the

concentration of NaCl. Percentage iRBC lysis was calculated by measuring the absorbance at 415 nm (A415) of released

haem normalised to a relative tonicity of one (isotonic). Representative of four independent experiments. Scatter plots

show error bars with mean ± SEM. See S2 Data for numerical data underlying figure. (B) The concentration required

for Lysis C50% for each of the three conditions: untreated, indolmycin treated (+ indolmycin), and polyprenol rescue

(+ indolmycin + GGOH). The Lysis C50% for indolmycin treated parasites increased by 22.3% (n = 4, SD ± 6.07)

whereas the Lysis C50% for the polyprenol rescued parasites did not significantly change. �P< 0.05; ��P< 0.01; two-

tailed Student t test. Box and whisker plots show the interquartile range. See S2 Data for numerical data underlying

figure. GGOH, geranylgeraniol; hpi, hours post invasion; IDC, intraerythrocytic developmental cycle; Lysis C50%, half-

maximal lysis; ns, not significant; RBC, red blood cell.

https://doi.org/10.1371/journal.pbio.3000376.g008
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Discussion

Apicoplast-located isoprenoid precursor biosynthesis is essential for parasite survival, but the

downstream effects on parasite cellular processes brought about by loss of apicoplast function

have not been elucidated. We hypothesised that second IDC arrest in delayed-death parasites

arises from a defect in the apicoplast that ablates IPP biosynthesis, which lethally effects para-

site cellular processes by depressing the turnover of essential isoprenoid products: prenyl

groups, ubiquinone, or dolichol. We refer to the cessation of de novo isoprenoid biosynthesis

and exhaustion of available products as an isoprenoid fatigue. Furthermore, we aimed to dis-

sect the temporal contribution of disrupting each of these pathways in delayed death to define

the hierarchy of causes for parasite growth arrest. Here, we argue that the proximate cause of

delayed death is the depletion of prenyl substrates required for protein prenylation, precipitat-

ing functional disruptions to intracellular trafficking, IMC assembly, DV biogenesis, and per-

turbing cellular homeostasis.

Disruption of prenylation-dependent processes generates parasite abnormalities that are

apparent by the trophozoite stage, with diminished haemoglobin turnover and aberrant DV

morphology. However, treated parasites branch their mitochondrion as usual during the tro-

phozoite stage [48] and transition to early schizont stages, completing multiple rounds of

nuclear division (e.g., Figs 6 and 7). This, combined with the finding from the metabolomic

analyses of gradual depletion of isoprenoids during the second cycle, suggests that the effect of

ablating protein prenylation by isoprenoid depletion is cumulative rather than immediate.

This interpretation is consistent with the findings by Chakrabarti and colleagues [32], who

showed through labelling experiments that most prenlyation occurs during the trophozoite

to schizont transition, and Nallan and colleagues [49], who showed that prenyl-transferase

inhibitors arrest parasites at the trophozoite stage. Our data suggest that delayed death overlaps

with but is distinct from phenotypes induced by fosmidomycin-mediated inhibition of IPP

biosynthesis during the terminal cycle [30]. Fosmidomycin is an inhibitor of the MEP/DOXP

pathway [33], and fosmidomycin treatment leads to a sudden arrest in IPP biosynthesis and

parasite death at a similar life stage, albeit in the first IDC with treatment, coincident with dis-

ruption of prenylation [30]. If fosmidomycin were added early enough in the cycle, we antici-

pate that it would also produce comparable effects on haemoglobin turnover DV morphology

Fig 9. Supplementing ubiquinone-independent yDHODH-expressing transgenic parasites with GGOH does not

protect from delayed death in the third IDC after treatment. Dose-response curve from SYBR-Green susceptibility

assay determined 48, 96, and 144 hours post indolmycin treatment, with and without polyprenol (5 μM GGOH)

rescue. Assays were performed in parallel with 3D7 and transgenic parasites expressing ubiquinone-independent

yDHODH. yDHODH parasites are susceptible to delayed death equivalent to 3D7 (inhibition at 96 hours). GGOH

supplementation does not further protect yDHODH parasites in the third IDC (inhibition at 144 hours).

Representative of at least three independent experiments. Scatter plots show error bars with mean ± SEM. See S2 Data

for numerical data underlying figure. GGOH, geranylgeraniol; IDC, intraerythrocytic developmental cycle; yDHODH,

yeast dihydroorotate dehydrogenase.

https://doi.org/10.1371/journal.pbio.3000376.g009
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in the same cycle. In contrast, delayed-death drugs have no noticeable effect on the abundance

or function of the apicoplast MEP/DOXP biosynthetic enzymes. Instead, we propose that

delayed-death drugs lead to a gradual expenditure of residual IPP in the second IDC—follow-

ing the loss of the apicoplast—that eventually lead to the loss of prenylation.

A pair of recent labelling experiments reveals a limited number of prenylated proteins that

are likely defective in delayed-death parasites. Fewer than 20 prenylated proteins have been

identified, predominantly Rab GTPases, with canonical and putative roles in vesicular mem-

brane trafficking [27,28]. The restricted prenylome of P. falciparum compared to other higher

eukaryotes indicates that prenylated proteins have relatively few roles in regulating parasite

cellular processes. These restricted roles are consistent with our observation of only limited

morphological and metabolic aberrations in parasites unable to synthesis new prenyl groups.

The temporary rescue of the prenyl-dependent delayed defects by GGOH (Figs 2, 4, 5 and

8) confirms the metabolomic finding that apicoplast-generated IPP is used for higher isopren-

oid compounds, and their depletion is the proximate cause of delayed death. The short-chain

length prenyl groups FPP and GGPP are the substrates for prenyl-transferases that covalently

modify protein by attaching prenyl moieties to cysteine residues at the carboxyl terminus of

target proteins. The successful rescue from delayed death by the polyprenol analogue GGOH

but not FOH is consistent with delayed death being dependent on prenylation of the Plasmo-
dium-Rab GTPases, which possess C-terminal prenylation motifs that predict attachment of

geranylgeranyl rather than farnesyl moieties, which were identified as possessing GGPP tags in

the Plasmodium prenylomes [27,28].

Prenylated Rab GTPases are master coordinators of intracellular vesicular trafficking. Rabs

act as molecular switches to regulate membrane rearrangements and facilitate vesicle budding,

motility, and fusion by recruiting effector proteins in their GTP-bound state [50]. The prenyl

modifications of Rab proteins are predicted to mediate their anchoring to the lipid bilayer of

endomembranes. Chemical or genetic ablation of the prenyl modification on Rab5a or FYVE-

containing coiled–coil protein (FCP; localised to the DV) leads to the mislocalisation of these

proteins [28,30,39], demonstrating that prenylation is necessary for correct protein function.

We found that Rab5a mislocalised during delayed death and that this coincided with a haemo-

globin trafficking defect. Previous conditional inactivation of Rab5a alone did not recapitulate

this phenotype [29,39], suggesting that the disruption of multiple prenylated proteins in the

delayed-death parasites are responsible for the perturbation of cytostomes and DV biogenesis.

Consistent with our observation, blockade of isoprenoid biosynthesis by fosmidomycin specif-

ically disrupts the ultrastructure of the DV [30]. Our study suggests that multiple proteins in

P. falciparum, prenylated using apicoplast isoprenoids, are essential for normal DV develop-

ment and by extension metabolism of host haemoglobin.

We also found that IMC assembly, previously shown to require vesicular trafficking by the

prenylated Rab11a, was disrupted during early schizogony. The mature IMC marker GAP45

has been colocalised to Rab11a-positive vesicles, indicating a role for Rab11a in trafficking

IMC proteins [40]. Hence, we hypothesise that mislocalisation of Rab11a in delayed death

could directly inhibit IMC assembly. Indeed GAP45, which associates with membranes via N-

terminal myristylation and palmitoylation rather than prenylation, was also mislocalised in

treated parasites, suggesting that overall assembly of the IMC is compromised in delayed

death. This is supported by the failure of delayed-death parasites to segment into merozoites

during second IDC arrest, as confirmed by light microscopy (Fig 2C).

Haemoglobin degradation is integral to parasite homeostasis, and disequilibrium of this

metabolic pathway likely contributes to delayed death in P. falciparum. The parasite faces two

physiological challenges as it grows within an iRBC: obtaining sufficient space and maintain-

ing osmotic pressure. In human RBCs, haemoglobin comprises 95% of the total protein in the
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cytoplasm [43]. As the parasite grows, its volume increases, but the average total volume of the

enclosing iRBC remains largely unchanged [43,51,52]. To achieve this, the parasite must inter-

nalise RBC cytoplasm by endocytosis and reduce the RBC contents. One reason for mitigating

total iRBC volume expansion could be to prevent the volume of an iRBC increasing such that

it surpasses its lytic volume and prematurely haemolyses (or is cleared by the spleen).

Aside from spatial restrictions, the uptake and turnover of host haemoglobin is thought to

play an important role in mitigating increasing osmotic stress on an iRBC as the parasite grows

[44,45]. The metabolically active trophozoite stage of P. falciparum massively increases the perme-

ability of the iRBC membrane, inducing the expression of the new permeation pathways (NPPs)

[53]. However, the net osmotic gain of this change should be sufficient to cause the iRBC to hae-

molyse [54]. The parasite must therefore compensate by reducing the osmotic influx of water by

decreasing the colloid–osmotic pressure exerted by proteins within the cell [45]. In effect, the par-

asite ingests and proteolyses host haemoglobin to amino acids that it can release across the iRBC

membrane via the NPPs [55]. We therefore hypothesise that disruption of haemoglobin internali-

sation and metabolism in delayed-death parasites must increase the osmotic fragility of the iRBC.

Consistent with this, iRBCs treated with indolmycin did haemolyse more readily in hypotonic

solutions (Fig 8), suggesting that prenylation-dependent trafficking defects do perturb osmolyte

homeostasis. This may be even more pronounced during the turbulence experienced during an

in vivo infection, but such haemolysis is difficult to measure. Our results would suggest that liver-

stage–derived merozoites with defective apicoplasts will also lack appropriate prenylation and

likely succumb in a similar manner to blood-stage delayed-death parasites.

The delayed-death effect observed in Plasmodium also has implications for understanding

the similar phenotype in Toxoplasma. As in Plasmodium, Toxoplasma relies on the apicoplast

for isoprenoid synthesis, albeit with additional isoprenoid scavenging from the host cell [19].

We anticipate that prenyl-dependent defects brought about by apicoplast delayed death also

impact endocytosis in Toxoplasma and likely disrupt feeding. However, there is not a direct

1:1 orthologue match for all pairs of Plasmodium and Toxoplasma Rabs [38], and the digestion

of haemoglobin in the Plasmodium vacuole in particular has no obvious direct cognate in

Toxoplasma. Unlike Plasmodium blood stages, Toxoplasma tachyzoites are also dependent on

their apicoplast for fatty acid biosynthesis, and this probably creates additional differences in

the mechanism of Toxoplasma delayed death.

Disrupting isoprenoid biosynthesis perturbs several downstream cellular processes, and we

sought to dissect how perturbation to each pathway contributes to delayed death. Disruption of

protein prenylation represents the proximate cause of delayed death during the second IDC after

treatment with a plastid inhibitor. However, arrest in the third IDC following treatment implies

that isoprenoid fatigue also lethally perturbs other isoprenoid pathways in P. falciparum, i.e., syn-

thesis of the ubiquinone isoprenoid-sidechain and dolichols. Using GGOH-rescued parasites, we

uncoupled the essential role of protein prenylation from the contribution of isoprenoid products

ubiquinone or dolichol. We determined that the yDHODH parasite line remained sensitive to

second IDC arrest following indolmycin treatment and that cotreatment with GGOH was insuf-

ficient to protect parasites further. IPP provided by the apicoplast would normally be incorpo-

rated into dolichols required for GPI anchor biosynthesis, but this pathway is not rescued by

GGOH. The essential contribution of dolichols and thus GPI-anchored proteins to establishment

of a third IDC likely therefore explains the inability of GGOH to provide a longer-lasting rescue.

Taken together, we can now establish a timeline for cellular processes subject to isoprenoid

fatigue that leads to parasite arrest in delayed death (Fig 10). The indolmycin-treated parasite

completes its first IDC normally but transmits a defective apicoplast to its progeny. This apico-

plast may be capable of producing some isoprenoid precursor at the start of the second IDC,

but this capacity wanes over the early stages of the cycle, and the isoprenoid products necessary
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for generating prenyl groups become depleted. Without available prenyl groups, nascent traf-

ficking proteins are no longer modified by prenylation and mislocalise, losing their functional-

ity. Haemoglobin trafficking, inner membrane complex formation, and merozoite membrane

biogenesis all require effective protein prenylation; during delayed death, these processes are

perturbed, which leads to second IDC parasite arrest. If parasites are treated with the polypre-

nol substrate GGOH, protein prenylation is recovered and parasites survive and segment.

However, even in the presence of GGOH, parasites are unable to progress through a complete

third IDC, likely due to disruption of dolichol mediated GPI synthesis and/or ubiquinone elec-

tron transport, which are not chemically rescued by GGOH.

Methods

P. falciparum culture

P. falciparum 3D7 parasites were maintained in continuous culture with minor modifica-

tions to the method described by [56]. Briefly, parasites were cultured in human O+ RBCs

Fig 10. Multifaceted disruption of protein prenylation by isoprenoid fatigue during delayed death. (1) IPP is synthesised by the apicoplast to produce the

prenyl-group GGPP. Protein substrates are modified by prenylation through the covalent attachment of one or more prenyl groups to their C-terminal cysteine

residues. Prenylated proteins in P. falciparum have canonical roles in endomembrane vesicle trafficking. (2) The early endosome marker Rab5a is a prenylated

protein in P. falciparum putatively involved in haemoglobin-containing vesicle trafficking to the parasite DV. Depletion of IPP during delayed death disrupts

protein prenylation and Rab5a mediated vesicle trafficking to the DV. (3) Prenylated Rab11a facilitates the assembly of the IMC by trafficking cargo, including the

IMC protein GAP45 to the IMC during merozoites segmentation. Depletion of IPP during delayed death disrupts the formation of the IMC. DV, digestive vacuole;

GAP45, glideosome-associated protein 45; GGPP, geranylgeranyl pyrophosphate; IMC, inner membrane complex; IPP, isopentyl pyrophosphate.

https://doi.org/10.1371/journal.pbio.3000376.g010
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(leukocyte-depleted by filtration, provided by the Australian Red Cross Blood Service) at

2% haematocrit in RMPI-1640 supplemented with 25 mM sodium bicarbonate, 25 mM

HEPES, 150 μM hypoxanthine, 20 μg/mL gentamicin, and 0.5% (w/v) Albumax II (Invitro-

gen) (complete medium). Cultures were maintained in flasks and petri dishes inside a

sealed container filled with a low oxygen malaria-mix gas (1% O2, 5% CO2, and 94% N2) at

37˚C with or without mechanical shaking.

Synchronised ring-stage cultures were obtained by double (14-hr interval) treatment with

5% (w/v) D-sorbitol during the parasite’s IDC prior to experimentation, and a single sorbitol

treatment of ring-stage parasites immediately prior to experimentation. Alternatively, 0–4 hpi

ring-stage parasites were generated by first enriching for schizonts using a custom magnetic

separation apparatus described previously [57], incubating the enriched parasites with fresh

RBCs for 4 hrs, and then treating the newly invaded RBCs with 5% (w/v) D-sorbitol.

LC-MS metabolic profiling

Metabolite profiling across the development of delayed death was initiated by treating 0–4-hr

ring-stage cultures (prepared as described above) with 50 μM indolmycin (BioAustralis Fine

Chemicals Product 21200-24-8) or dimethyl sulfoxide vehicle control for 30 hrs and then the

culture medium was replaced. Samples were collected at 30, 58, 68, 78, and 88 hrs post drug

administration (equivalent to 30 hpi in the first IDC and then 14, 24, 34, and 44 hpi in the sec-

ond IDC) for metabolite extraction and analysis by LC-MS. Samples with equivalent parasite-

mia were collected and 1×108 RBCs per conditions were centrifuged at 14,000 g for 30 seconds

(4˚C), washed with 1 mL of ice-cold phosphate buffered saline (pH 7.4), centrifuged again and

the cell pellet extracted with 200 μL of 80% (v/v) acetonitrile (in water containing 5 μM 13C-

aspartate as the internal standard). The cell extracts were rapidly resuspended, vortexed and

then centrifuged at 14,000 g for 10 min at 4˚C. The metabolite extract was transferred to an

MS vial and LC-MS analysis was preformed using methods previously described [58], with an

Agilent Q-TOF mass spectrometer 6550 operating in negative ESI mode. In an effort to detect

dolichol we also purchased a dolichol standard (Avanti) but were unable to detect this by

LC-MS. Metabolomics data have been deposited at Metabolomics workbench [59], study

ST001188 (http://dx.doi.org/10.21228/M88M3Q).

Immunoblot analysis

Synchronised ring-stage parasites (prepared by sorbitol treatment described as per P. falcipa-
rum culture) were treated with 50 μM indolmycin (BioAustralis Fine Chemicals) or dimethyl

sulfoxide vehicle control for 30 hrs. The medium was replaced 30 hrs post drug administration,

supplementing with the polyprenol rescue compound GGOH (5 μM) (Sigma Aldrich, G3278)

as indicated. Trophozoites (5–10% parasitaemia) were collected at approximately 72–78 hrs

post drug administration by lysis with 0.05% (w/v) saponin. Cells were then pelleted by centri-

fugation, washed with PBS, and then resuspended in Laemmli Sample Buffer (Bio-RAD) with

2.5% (v/v) 2-Mercaptoethanol and complete EDTA-free Protease Inhibitor (Roche). Samples

were then either snap-frozen in liquid nitrogen and stored at -80˚C or loaded directly onto

Mini-PROTEAN™ TGX Precast Gels (Bio-RAD) in Tris-glycine buffer. Following electropho-

resis at 180 Volts for 35 min, proteins were transferred to nitrocellulose membranes using the

iBlot 2 western transfer system (Thermo Fisher Scientific).

PVDF membranes with bound protein were then blocked in 5% (w/v) skim milk in PBS,

incubated with rabbit anti-farnesyl polyclonal antibody at 1:1,000 dilution (Life Technologies,

PA1-12554) or mouse anti-BiP at 1:1,000 [60]. Following multiple washes with PBS-tween,

horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (PerkinElmer) or HRP-
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conjugated rabbit anti-mouse IgG (Promega) at 1:10,000 dilution was applied to membranes.

Enhanced chemiluminescent detection was performed with SuperSignal1West Pico/Femto

Sensitivity Substrate (Thermo Fisher Scientific) and analysed using the ChemiDoc™ Imaging

System (Bio-RAD).

Fluorescein dextran uptake assay

Using a modified version of the methodology described in Frankland and colleagues [35] and

Baker and colleagues [36], packed RBCs were lysed with ice-cold lysis buffer (5 mM Na phos-

phate, 1 mM ATP; pH 7.5) containing 50 μM F-dextran (Life Technologies, D1820), and then

incubated for 10 min at 4˚C. The cells were then re-sealed by adding NaCl to 150 mM and

incubating them for 45 min at 37˚C. The re-sealed RBCs, loaded with F-dextran, were then

washed in complete media (see above, P. falciparum culture) and stored at 4˚C for up to one

week. Internalisation assays were commenced by inoculating the preloaded RBCs with

enriched schizonts (prepared as per P. falciparum culture), treating the newly invade ring-

stage parasites with 50 μM indolmycin (BioAustralis Fine Chemicals) or dimethyl sulfoxide

vehicle control for 30 hrs. The medium was replaced 30 hrs post drug administration, supple-

menting with the polyprenol rescue compound GGOH (5 μM) (Sigma Aldrich) as indicated.

Trophozoites were collected at approximately 72–78 hrs post drug administration for live-cell

microscopy. The iRBCs were washed for 5 min in 1 μg/mL Hoescht 33342 (Life Technologies)

and mounted to directly to slides. Microscopy was performed using the DeltaVision Elite™
Widefield deconvolution (GE Healthcare) imaging platform. ImageJ (v1.51n) [61] was used to

merge multiple microscopy channels. GraphPad Prism (V. 7.01) was used to plot data.

Fluorescent microscopy

Fluorescent imaging of cells was performed either by live microscopy or indirect immunofluo-

rescence assay. For live cell microscopy: iRBCs were collected, stained with 1 μg/mL Hoechst

33342 (Life Technologies), and mounted directly to glass slides. For indirect immunofluores-

cence assay: glass coverslips were pre-coated with 0.1 mg/mL pHAE (erythroagglutinating

phytohemagglutinin) (Sigma Aldrich), and iRBCs were applied at 5% haematocrit in PBS to

form a monolayer. The cells were then fixed on the coverslip with 2% (w/v) paraformaldehyde

and 0.006% (w/v) glutaraldehyde for 20 min, permeabilised with 0.1% (v/v) Triton X-100 for

10 min, and then incubated with primary antibodies: 1:300 rabbit anti-GAP45 [41], 1:1,000

rabbit anti-REX1 [62] in 3% (w/v) BSA for 2 hrs. Following washing, Alexa Fluor 488 and

594-conjugated (Thermo Fisher scientific) anti-rabbit or anti-mouse secondary antibodies in

3% (w/v) BSA were applied to cells for 1 hr, washed with 300 nM DAPI (Sigma Aldrich), and

mounted to slides with ProLong1 Gold Antifade (Thermo Fisher scientific). Microscopy was

performed using the DeltaVision Elite™ Widefield deconvolution (GE Healthcare) imaging

platform. ImageJ (v1.51n) [61] was used to merge multiple microscopy channels.

GFP-Rab5a localisation

Endogenously tagged GFP-2xFKBP-Rab5a [39] parasites were maintained in O+ RBCs as

described [56] under selection with 4 nM WR99210 (Jacobus Pharmaceuticals). Parasite cul-

tures were synchronized to 0–5 hpi and parental cultures were split into two dishes. Cells were

exposed to 5 μM clindamycin (Ratiopharm) or vehicle (dH2O) for 35 hrs. Parasites were

washed three times in complete RPMI medium (see above, P. falciparum culture), incubated

for a further 51 hrs until 86–91 hpi and subsequently prepared for imaging.
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Imaging and analysis of GFP-Rab5a cell line

All live cell images of the GFP-Rab5a cell line haven been taken with a Carl Zeiss Axio Imager

A1 and imaging was performed as described [63]. A 100×/1.4–numerical aperture lens com-

bined with a Hamamatsu Orca C4742-95 camera was used. Parasite cultures were stained with

1 μg/mL DAPI for 15 min before imaging. Exposure time was identical for all acquired images

on the GFP channel. Parasites to be analysed were selected from DIC images. The correspond-

ing GFP image were loaded into ImageJ (v1.51n) [61]. Setting to be recorded were max grey

value and mean grey value. The background fluorescence of the images as well as the maxi-

mum fluorescent intensity of the brightest focus within the parasite and the background fluo-

rescence of each parasite (excluding GFP foci) were measured. Image background

fluorescence intensity was subtracted from the latter two values and the ratio was calculated.

For plotting of data GraphPad Prism (V. 7.01) was used. Representative images were processed

with Corel Photo-Paint x6 by adjusting brightness and intensity (V. 16.4.1.1281).

3D block-face scanning electron microscopy

Synchronised 0–4 hpi ring-stage parasites (prepared as per P. falciparum culture) were treated

with 50 μM indolmycin (BioAustralis Fine Chemicals) or dimethyl sulfoxide vehicle control

for 30 hrs. Media was replaced 30 hrs post drug administration, and where indicated, cultures

were supplemented with the polyprenol rescue compound GGOH (5 μM) (Sigma Aldrich).

Trophozoites (5–10% parasitaemia) were collected at approximately 72–78 hrs post drug

administration (equivalent to 28–34 hpi in the second IDC) by magnetic separation (as

described above, P. falciparum culture) and fixed with 2.5% (w/v) glutaraldehyde in 0.1 M

sodium cacodylate for at least 2 hrs at 4˚C. Cells were washed in 0.175 M sodium cacodylate

and then incubated en bloc in 1% (w/v) low-melt agarose with 1.5% (w/v) potassium ferrocya-

nide and 2% (w/v) osmium tetroxide in 0.15 M sodium cacodylate for 1 hr at 4˚C. Cells were

washed in Milli-Q1 water and then incubated with 1% (w/v) thiocarbohydrazide for 20 min.

Following further washes, cells were incubated with 2% (w/v) osmium textroxide for 30 min,

2% (w/v) uranyl acetate overnight at 4˚C, and then Walton’s lead aspartate for 30 min at 60˚C.

Supernatant was then removed, samples were washed thoroughly with Milli-Q water before

gradually dehydrated in ethanol, then acetone, and finally infiltrated with Procure 812 resin

(ProSciTech). Samples were then polymerised by curing at 60˚C for at least 24 hrs. Each poly-

merised block-face was trimmed to 1 mm3, and then serially sectioned (50 nm) and imaged

using the Teneo Volume Scope (FEI) at 3kV. Image processing was performed using the

IMOD software package (V. 4.9) [64]. For plotting of data GraphPad Prism (V. 7.01) was used.

Dose-response assay

Synchronised ring-stage 3D7 parasites (prepared by sorbitol treatment described as per P. fal-
ciparum culture), or yDHODH parasites [65] maintained under selection with 5 nM WR99210

(Jacobus Pharmaceuticals), were set up in triplicate within V-bottom 96-well plates (1% haema-

tocrit, 1% parasitaemia: 48 hrs; 0.1% parasitaemia: 96 hrs; 0.01% parasitaemia: 144 hrs) and

treated with varying concentrations of indolmycin (BioAustralis Fine Chemicals), clindamycin

hydrochloride (Sigma Aldrich), and chloramphenicol (Sigma Aldrich), prepared by serial dilu-

tion in complete medium (See above, P. falciparum culture). Equivalent iRBC wells were set up

in complete medium only and positive-KILL controls were initiated in triplicate using these

additional wells by adding 200 nM dihydroartemisinin (Sigma Aldrich) to ring-stage parasites

48 hrs prior to assaying growth inhibition. Complete medium was replaced after each IDC, and

rescue compounds GGOH (Sigma Aldrich, G3278), FOH (Sigma Aldrich, F203), and IPP were

added at varying concentration in complete medium for the cycles indicated. Growth
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inhibitions were analysed at 48, 96, and 144 hrs as indicated using SYBR Green assay as previ-

ously described [66], briefly RBC pellets were lysed and incubated with SYBR Green I (Thermo

Fisher Scientific) for 1 hr and analysed using FLUOstar Omega plate reader (BMG Labtech).

Percentage survival was determined by normalising the SYBR green signal of the treated condi-

tions to the untreated controls, and then subtracting the background signal derived from the

positive-KILL controls. EC50s given here are the concentration of compound required to

inhibit 50% of this normalised SYBR green signal. Corrected values were plotted by XY scatter

using GraphPad Prism (V. 7.01) and EC50 values were attained from the dose-response curves.

Osmotic fragility assay

The osmotic fragility of indolmycin treated iRBCs were analysed using a protocol modified

from Lew, Tiffert and Ginsburg [44], and Dennis and colleagues [46]. Synchronised 0–4 hpi

ring-stage parasites (prepared as per P. falciparum culture) were treated with 50 μM indolmy-

cin (BioAustralis Fine Chemicals) or dimethyl sulfoxide vehicle control for 30 hrs. Media was

replaced 30 hrs post drug administration, and where indicated, cultures were supplemented

with the polyprenol rescue compound GGOH (5 μM) (Sigma Aldrich). Trophozoites (2% hae-

matocrit, 5–10% parasitaemia) were enriched at approximately 72–78 hrs post drug adminis-

tration (equivalent to 28–34 hpi in the second IDC) by magnetic separation (as described

above, P. falciparum culture). iRBC were resuspended in 400 μL of solution A (150 mM NaCl,

2 mM HEPES-Na, pH 7.4, relative tonicity (RT) = 1:300 mOsm). In a V-bottom 96-well plate,

200 μL of varying saline-tonic solutions were prepared in triplicate by diluting Solution A with

Solution B (2 mM HEPES-Na, pH 7.4, RT = 0.04; 12 mOsm) to produce a range of saline

tonic-solutions with RTs of 0.04 to 1. 10 μL of enriched iRBCs were then aliquoted into each

tonic solution and incubated at room temperature for 10 min. Plates were then centrifuged at

1,200 g for 10 min and 175 μL of supernatants were transferred to a flat-bottom 96-well plate

for analysis as described in Dennis and colleagues [46] using a FLUOstar Omega plate reader

(BMG Labtech). GraphPad Prism (V. 7.01) was used to plot data.

Supporting information

S1 Fig. Dose-response curve to polyprenol compounds GGOH and FOH. SYBR-Green sus-

ceptibility assay determined 48 hrs post polyprenol treatment. Concentrations of GGOH

greater than 20 μM and concentrations of FOH greater than 30 μM inhibit P. falciparum
intraerythrocytic growth. Data are presented as the average of one experiment ± SD. See S2

Data for numerical data underlying figure. FOH, farnesol; GGOH, geranylgeraniol.

(TIFF)

S2 Fig. Polyprenol supplementation with GGOH but not FOH protects parasites from the

delayed death effect of apicoplast inhibitors. (A) Dose-response curve from SYBR-Green

susceptibility assay determined 120 hrs post chloramphenicol treatment, with varying concen-

trations of GGOH supplemented as indicated. Data are presented as the means of three inde-

pendent experiments ± SD. See S2 Data for numerical data underlying figure. (B) Dose-

response curve from SYBR-Green susceptibility assay determined 120 hrs post chlorampheni-

col treatment, with GGOH (5 μM), FOH (5 μM), or GGOH (5 μM) plus FOH (5 μM) supple-

mentation as indicated. Inhibition at 120 hrs is rescued by 5 μM GGOH but not 5 FOH or a

combination of the two polyprenol compounds. Data are presented as the means of two inde-

pendent experiments ± SD. See S2 Data for numerical data underlying figure. FOH, farnesol;

GGOH, geranylgeraniol.

(TIF)
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S3 Fig. Polyprenol supplementation with geranylgeraniol protects parasites from the effect

of clindamycin and chloramphenicol in the second IDC after treatment. (A) Dose-response

curve from SYBR-Green susceptibility assay determined 48, 96, and 144 hrs post clindamycin

treatment, with polyprenol (5 μM GGOH) supplementation as indicated. Clindamycin causes a

delayed-death effect (inhibition at 96 but not 48 hrs) that is rescued by GGOH. However, inhi-

bition at 144 hrs is not recued with GGOH supplementation. Data are presented as the means

of three independent experiments ± SEM. See S2 Data for numerical data underlying figure. (B)

Dose-response curve from SYBR-Green susceptibility assay determined 48, 96, and 144 hrs post

chloramphenicol treatment, with polyprenol (5 μM GGOH) supplementation as indicated.

Chloramphenicol causes a delayed-death effect (inhibition at 96 but not 48 hrs) that is rescued

by GGOH. However, inhibition at 144 hrs is not recued with GGOH supplementation. Data are

presented as the means of three independent experiments ± SEM. See S2 Data for numerical

data underlying figure. GGOH, geranylgeraniol; IDC, intraerythrocytic development cycle.

(TIFF)

S4 Fig. Aberrant morphology of DV in delayed-death parasites. Synchronised ring-stage

parasites were treated with indolmycin (50 μM), with and without polyprenol rescue (5 μM

GGOH) as indicated. Enriched trophozoite-stage parasites were collected for reduced osmium

fixation 72–78 hrs post drug administration (equivalent to 28–32 hpi in the second IDC after

treatment). Representative images (top-down and cross-sectional), from TEM of each condi-

tion: untreated, indolmycin treated, and indolmycin treated with polyprenol rescue. Structures

indicated are N, DV, and CI. Scale bar = 1 μm. CI, cytostomal invagination; DV, digestive vac-

uole; GGOH, geranylgeraniol; IDC; intraerythrocytic developmental cycle; N, nucleus; TEM,

transmission electron microscopy.

(TIFF)

S5 Fig. Export of a PEXEL-negative protein is not affected by treatment with clindamycin

or indolmycin. Representative immunofluorescence images of untreated, indolmycin- and

clindamycin-treated parasites during the second IDC following treatment. Parasites were

labelled with antisera (1:1,000) recognising REX1 (1:1,000). The exported protein REX1 local-

ises to the RBC in indolmycin- and clindamycin-treated parasites equivalent to untreated.

REX1, green signal; DAPI: parasite nuclei, blue signal; merge of green and blue signal. Scale

bar = 5 μm. BF, bright field; DAPI, 40,6-diamidino-2-phenylindole; IDC, intraerythrocytic

developmental cycle; PEXEL, protein export elements; REX1, ring-exported protein 1.

(TIFF)

S1 Movie. Z-stack from serial block-face scanning electron microscopy of delayed death

parasites. Enriched trophozoite-stage parasites were collected for reduced osmium fixation

72–78 hrs post drug administration (equivalent to 28–32 hpi in the second IDC after treat-

ment). Samples were imaged by SEM and subsequently trimmed 50 nM by automated dia-

mond knife before reimaging. Imaging was repeated hundreds of times and parasite structures

were manually traced for IMOD analysis. IDC, intraerythrocytic developmental cycle.

(AVI)

S2 Movie. Serial block-face scanning electron microscopy of delayed death iRBC ZOOM.

3D-rendered iRBCs. Enriched trophozoite-stage parasites were collected for reduced osmium fix-

ation 72–78 hrs post drug administration (equivalent to 28–32 hpi in the second IDC after treat-

ment). Compartments are RBC (white), parasite (blue), cytostomal invaginations (yellow), and

digestive vacuole (red). Shown is an indolmycin treated (50 μM) iRBC with two nuclei, n = 1.

Scale bar = 1 μm. IDC, intraerythrocytic developmental cycle; iRBC, infected red blood cell.

(MOV)
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S3 Movie. Serial block-face scanning electron microscopy of untreated iRBCs. 3D-rendered

iRBCs. Enriched trophozoite-stage parasites were collected for reduced osmium fixation 72–

78 hrs post drug administration (equivalent to 28–32 hpi in the second IDC after treatment).

Compartments are RBC (white), parasite (blue), CIs (yellow), and DV (red). Shown are

untreated iRBCs with two nuclei, n = 7. CI, cytostomal invagination; DV, digestive vacuole;

IDC, intraerythrocytic developmental cycle; iRBC, infected red blood cell.

(MOV)

S4 Movie. Serial block-face scanning electron microscopy of delayed death iRBCs. 3D-ren-

dered iRBCs. Enriched trophozoite-stage parasites were collected for reduced osmium fixation

72–78 hrs post drug administration (equivalent to 28–32 hpi in the second IDC after treat-

ment). Compartments are RBC (white), parasite (blue), cytostomal invaginations (yellow), and

digestive vacuole (red). Shown are indolmycin treated (50 μM) iRBCs with two nuclei, n = 7.

IDC, intraerythrocytic developmental cycle; iRBC, infected red blood cell.

(MOV)

S5 Movie. Serial block-face scanning electron microscopy of polyprenol rescued delayed-

death iRBCs. 3D-rendered iRBCs. Enriched trophozoite-stage parasites were collected for

reduced osmium fixation 72–78 hrs post drug administration (equivalent to 28–32 hpi in the

second IDC after treatment). Compartments are iRBC (white), parasite (blue), CIs (yellow),

and DV (red). Shown are indolmycin treated (50 μM) with GGOH supplementation (5 μM)

iRBCs with two nuclei, n = 5. CI, cytostomal invagination; DV, digestive vacuole; IDC, intraer-

ythrocytic developmental cycle; iRBC, infected red blood cell.

(MOV)

S1 Data. Delayed-death metabolite time course. P. falciparum-infected cultures were col-

lected for LC-MS metabolite detection across the first and second IDC following indolmycin

treatment in comparison to an untreated control. IDC, intraerythrocytic developmental cycle;

LC-MS, liquid chromatography mass spectrometry.

(XLSX)

S2 Data. Summary data of numerical values that underlie quantitative analyses presented

in the figures.

(XLSX)
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